
 

How to use snakes to speed up software without slowing down the time-to-market? 

By Andrea Leopardi, Niclas Jansson, Pieter van der Star, BitSim AB 

  1 of 10 
   

Introduction 
For almost 20 years, BitSim has developed 

embedded systems. During these years, we 

have seen customers who are uncertain of the 

system requirements and some of them were, 

and are, unsure of their functional 

requirements. This does not match well with 

traditional FPGA development, where a 

development cycle takes days, if not weeks. 

Where a customer wants a “simple” functional 

change, for an FPGA developer, this is not 

always that simple. With the internet of things 

(IoT) becoming a reality, companies that before 

did not need a smart system are now searching 

for solutions to integrate their existing designs 

into an IoT device easily. At BitSim, we have a 

way to simplify and speed up the development 

cycle. In this document, we will discuss the 

issue of network load in an IoT environment as 

well as "our" way to speed up the 

development. 

 

 

 

 

 

Central or distributed processing 
The recent trend has been to run everything in 

the cloud. There, a centralized solution, such as 

a server, is handling the massive amount of 

data from the IoT devices. This solution may 

not be the best for all kinds of applications. 

What if the network bandwidth is limited or it 

is very costly to send data over the cables or 

wireless? What if you’re concerned about the 

latency? If sending data over the network takes 

a relatively long time, this inhibits a quick 

response for decision making. Maybe it is 

better to compress or filter all the data before 

sending it over the network. Sending just 

enough meaningful data to the cloud, thereby 

improving performance, cost and/or security. 

If your application needs near real-time 

processing or low-latency performances, the 

concept of a distributed platform or Edge 



 
 

2 of 10 
 

Computing1 may be a better choice. It may also 

offer lower operational costs and reduce traffic 

on the network. 

Advantages of Edge Computing  
In Edge Computing, some or all processing is 

performed close to the data sources. In this 

way, latency is reduced, and thus analysis can 

be carried in real-time or near real-time. An 

example demanding these characteristics can 

be found in the field of Advanced Driver-

Assistance Systems (ADAS) and Autonomous 

Vehicles, where the vehicle must be able to 

analyse data locally.  

If the processing were entrusted to a remote 

unit, the vehicle would have to transmit a large 

amount of raw data first, then wait for that 

data to get processed and results sent back, 

with critical effects on time for action in a 

traffic environment, not to mention a 

vulnerability to network attacks. Therefore, 

centralized platforms must also rely on a more 

robust communication network than Edge 

Computing solutions, with an associated higher 

cost for scalability.  

 
1 Edge Computing puts processing closer to the 
data sources. 

 

FPGA SoC Evolution 
Edge computation is easier than ever and can 

be handled by CPUs, GPUs, FPGAs or ASICs.  

All the major FPGA vendors have their own 

version of FPGA SoCs (System on Chip), which 

contain both a CPU and FPGA in tandem. Xilinx 

has Zynq 7000 and MPSoC, Intel is just calling 

them SoCs, and Microchip/MicroSemi has 

SmartFusion SoCs. These are featuring more 

and more efficient capabilities making them an 

attractive solution for many applications. A 

typical FPGA SoC includes a powerful and 

popular ARM processor with a large FPGA-part 

with several thousands of parallel computation 

blocks including DSPs and on-chip memories. 

These types of solutions allow you to save 

space, power and cost, combining the flexibility 

of a CPU with the speed of dedicated hardware 

acceleration, making this an attractive solution 

for many applications, such as: 

• Autonomous vehicles and ADAS 

• Machine control 

• Smart farming 

• Smart buildings or cities 

• Healthcare 

• Surveillance 

• Augmented reality 

  



 
 

  3 of 10 
 

Vision Systems 
With FPGA SoCs able to carry heavy processing 

loads, it also becomes possible to perform 

complex algorithms efficiently at the edge, 

including the ones for vision systems. Vision 

systems represent a technology that has 

affirmed itself as a useful resource in many 

application fields, and that can be adapted to 

solve a wide range of problems, including 

classification, analysis, recognition and 

semantic understanding. In particular, with the 

adoption of machine learning, Computer Vision 

has become much better at these tasks. 

 
 

 
Vision and Machine Learning systems on FPGA 
SoCs 
While the massive parallelism exploited by 

FPGA SoCs may result in a better performance 

per watt compared to CPUs and GPUs, 

implementing Vision and Machine Learning 

algorithms in embedded systems can be very 

challenging. To cover all the steps from the 

highly abstracted algorithms of Computer 

Vision or Machine Learning down to the design 

of firmware and sometimes even hardware2, 

requires overlapping knowledge at all levels of 

the design. Such knowledge is critical 

concerning time for development and a gap in 

this knowledge may result in inefficient 

solutions, making the system less responsive 

and thus making the solution unusable for 

practical applications.  

Within the Xilinx environment, efforts are 

being made to release useful resources to 

integrate Vision and Machine Learning systems 

into FPGA SoCs platforms. Specifically, Xilinx 

has released a stack for the development of 

responsive and reconfigurable vision systems 

known as the reVISION stack. The reVISION 

2 Hardware: everything that you can see and 
hold; Firmware: An FPGA configuration; 
Software: Program running on a CPU or GPU. 

stack offers resources and tools oriented to 

Computer Vision, like xfOpenCV3, and Machine 

learning. This is mainly designed for the Xilinx 

Zynq UltraScale+ family. However, the Zynq-

7000 family can also benefit from all these 

high-level opportunities released by Xilinx. 

 

 

 

 

 

 

3 An optimized version of OpenCV for Xilinx. 

 140 

 210 



 
 

4 of 10 
 

Pistonhead – A High-level Imaging Processing 
Platform 
Looking at all these technical areas, BitSim has 

developed an autonomous platform for Visual 

Systems called Pistonhead. It is a development 

board together with software and firmware, 

designed as a highly customizable Vision 

platform, featuring an FPGA SoC: the Zynq 

7000 device from Xilinx.  

In its basic version, Pistonhead comes as an 

embedded Video-over-ethernet system 

featuring the popular and standardized high-

speed MIPI CSI-24, using BitSims IP, as a camera 

 
4 MIPI CSI-2, a standardized high-speed 
Camera Serial Interface: www.mipi.org. 

sensor interface. In this configuration, it 

features a modular design for the streaming of 

compressed data over Ethernet. It uses MJPEG 

for image compression, and the data is 

packaged in RTP and UDP packets, adaptable 

for different requirements. 

On top of this base version, Pistonhead can be 

enriched with a Linux system featuring a 

customized Python for Zynq (PYNQ) 

environment. PYNQ allows software 

developers to easily implement Computer 

Vision and Machine Learning algorithms on a 

Zynq platform using Python. High-level 

algorithms can be computed on the CPU (PS) as 

well as accelerated in the Programmable Logic 

part (PL) of the FPGA. Accelerated algorithms 

can be called as normal Python functions and 

mixed with non-accelerated code. Moreover, 

Python can be used both as a wrapper for 

C/C++ and other languages, as well as the main 

development language integrating all Python 

modules for image processing, neural network 

inferring, data analysis, plotting, data 

visualization and so on.  

  

http://www.mipi.org/


 
 

  5 of 10 
 

Use case: Pistonhead for 

Smart Farming 
Pistonhead is designed as an autonomous and 

modular platform with high computational 

capabilities, energetic efficiency, exploiting 

vision-oriented elements and network 

connectivity. Thanks to these features, the 

platform is valuable for the tasks of data 

collection, monitoring and analysis. 

One of the fields of application in which 

Pistonhead has been adopted is Smart 

Farming. In Smart Farming, easily deployable 

devices need to be placed in special 

environments and are tasked with monitoring 

by performing measurements and analysis.  

 
 
 

Here we would like to explore how a company 

working in the field of Smart Farming can use 

Pistonhead for the development of their 

applications. These take real-time 

measurements to provide farmers with the 

necessary information about the current status 

of their livestock, plants, and/or crops. In our 

example, Pistonhead is being used to monitor 

hogs or cattle, as illustrated in the figure above. 

The health status of these animals can be 

measured in the infrared spectrum and 

evaluated through statistical analysis. The 

infrared part of the spectrum can be acquired 

through a Thermal Camera Module that has 

been used together with a daylight camera. 

 

Simplifying Analysis  
BitSim’s design handles the video and 

telemetry data and brings them into the ARM 

Processor System. The Linux system is 

customized to enable SPI and I2C interfaces 

directly in the User-Space. From the User-

Space, communication is driven through C 

coded drivers. These drivers have been 

abstracted to one line of code through a 

Python wrapper. Finally, the company can 

analyse data in Python with PYNQ, OpenCV5 

and other Python modules for numeric analysis 

and plotting. 

  

5 A common open-source library for Computer 
Vision. 

 



 
 

6 of 10 
 

The PYNQ framework 
The main goal of PYNQ, Python Productivity for 

Zynq, is to make it easier for application 

developers to exploit the benefits of Xilinx 

FPGA SoCs performances and in particular the 

Zynq devices. 

Python allows agile programming and can 

integrate many tools for Computer Vision, data 

analysis and visualization, such as: OpenCV, 

NumPy6 and Matplotlib7. While Python works 

at a high-level and offers fast development, the 

acceleration (overlay) is done at a low-level, 

meaning that it still requires skilled FPGA 

design engineers to create new accelerations. 

PYNQ can be divided into different layers, as 

shown in the image below; simplified, PYNQ is 

divided into two main levels: the Python level, 

for development and the Overlay level, for 

acceleration. An Overlay describes the PL 

design and is packaged in such a way that it can 

be easily loaded through Python. An overlay 

can be seen as a software library. Therefore, 

SW developers can work at the Python level, 

detaching themselves from the 

 
6 A package for scientific computing. 

implementation of the Overlay, which involves 

knowledge of FPGA design.  

FPGA Acceleration in PYNQ 
The Programming Logic (PL) part of the FPGA is 

configured through the loading of an Overlay in 

PYNQ. A short description of the 

methodologies involved in the creation of an 

Overlay is given here.  

 

7 A plotting library with similarities to MATLAB. 

An Overlay is developed for the PL-part, 

meaning there is a description of how the 

physical FPGA resources are connected to each 

other. This also includes external interfaces 

from the FPGA to the HW (circuit board), the 

Pistonhead board in this case.  

  



 
 

  7 of 10 
 

A PL design can be implemented with different 

tools and the workflow is given in the figure to 

the right. Each block signifies a tool. The blocks 

in the left column are used to generate blocks 

of code called RTL blocks. Application 

developers are using only the tools on the right 

(the PYNQ system). Colours identify blocks with 

some similarities.  

An RTL block can be implemented in different 

ways: one option is using Hardware Description 

Languages (HDL) such as VHDL or Verilog. 

These languages offer deep control over block 

implementation, allowing the best 

performances with the minimum amount of 

FPGA resources. However, in-depth knowledge 

of FPGA architectures and device specific 

implementations are needed. This usually 

means development takes a longer time. 

A second possibility is to implement an RTL 

block in C/C++. However, since this language 

has a higher level of abstraction, direct RTL 

implementation is not possible. 

High-Level Synthesis (HLS) is used to compile 

C/C++ code into an RTL block. Compared to 

HDL, HLS offers faster time for development 

but less control over the end result. Moreover, 

C code has still to be structured in a low-

abstraction way. Usually, HLS-designs work 

best with algorithms and image processing 

functions and less with control logic, like 

interfaces.  

Targeting HLS development, Xilinx has released 

an environment for Computer Vision and 

Machine Learning development called the 

reVISION stack. This includes a range of 

development resources for vision systems like 

xfOpenCV, a library made for embedded vision 

inspired to the more known OpenCV.  

 

To sum up:  

 Software running on the PS can be 
accelerated 

 Acceleration is done in the PL design 
This can be implemented both in HDL 
(VHDL/Verilog) as well as in HLS (C/C++) 

 The former offers full control over the 
actual implementation, but it also requires 
development times that can be much 
longer than HLS  

 On top of HLS, it is possible to integrate CV 
oriented libraries like xfOpenCV (reVISION 
stack from Xilinx) 

 Python can call accelerations which are 
packaged into an Overlay 

 
In the appendix, we show an example of the 
Python code running on the Pistonhead board.  



 
 

8 of 10 
 

Productivity vs 

performance 
This chapter has some technical parts, but the 

text has been written in such a way that 

everyone can understand the results and 

observations, even without a technical 

background.  

BitSim has taken an algorithm, used for scaling 

an image, called pyramiding, and implemented 

in both Python, HLS and HDL code. This allowed 

us to, to a certain extent, compare the three 

implementations and show the advantages and 

disadvantages of each. To make a fair 

assessment all three implementations have to 

be similar and hence use: 

• A full-HD, grayscale image 

• A gaussian blur with a 5x5 kernel 

To simplify analysis, the time for data transfers 

to and from the blocks have been ignored. 

We compared the implementations and scored 

them between 1 and 5 points. We were 

interested in the difference in development 

time: “How fast do I have a finished function?”, 

FPGA size: “How small is my design?” i.e. “Do I  

need to buy a more expensive chip?” and 

latency: “How long does it take for the last pixel 

to be processed?”.  

 

The numbers 
Although the scoring table gives a nice 

overview, some readers might be interested in 

the actual numbers behind the scores. These 

numbers require a more in-depth and technical 

description of the tests.  

Pyramiding can be done on multiple layers, 

where each layer performs the same task, but 

takes as input the output of the previous layer. 

This means a two-layer blur result in an image 

that is blurrier than a one-layer blur. 

The Python implementation, which makes use 

of the OpenCV library, is executed on the 

processor. This means two things:  

1. No FPGA resources are used. 

2. The speed depends on how busy the 

processor is.  

Results in the Table show a reasonable 

variation of speed tested on a simple demo. 

However, speed might decrease depending 

from the complexity of your application. 

The HLS implementation is using the OpenCV 

library from Xilinx. Such a library targets 

developers used to C/C++ programming which 

is more abstract and less restricted to specific 

platform. Nevertheless, a knowledge of 

embedded systems is still strongly required.  

HLS comes with the advantage of making 

available a large stack of resources oriented to 

vision systems. As drawback, this stack of HLS 

resources can be harder to adjust if someone 

wants to increase performances or reduce 

resource utilization. Furthermore, HLS is meant 

to be used within a specific environment called 

SDSoC and it can be intricated to integrate the 

HLS libraries into a design or project. 

  

 Development time FPGA size Speed [FPS] 

Python ●●●●● n/a ● 
HLS ●●● ●●◖ ●● 
HDL ● ●●●●● ●●●●● 
●:  More is better 



 
 

  9 of 10 
 

The HDL implementation is hand-coded by 

BitSim engineers. The framerate is not 

impacted by the layers, instead the size is 

multiplied for each layer. This implementation 

also has little need for blanking, which also 

increases the possible framerates. 

Our engineers have full control over the HDL 

implementation which can be optimized for 

each case and client respect to FPGA resources 

limitations and performance needs. This has a 

direct impact on the time for development. 

 

 

 

 
8 Faster FPGA speed-grade = more expensive 
silicon. 

For Xilinx 7 series Python HLS HDL HDL €€€8 

Development time Minutes Days Weeks Weeks 

Max FPGA clock [MHz] n/a 200 250 300 

Size [LUT] n/a 3300 460 460 

Size [FF] n/a 2100 700 700 

Size [BRAM_18k] n/a 10 4 4 

Latency first-first (pixel) not given < 3 lines < 3 lines < 3 lines 

Latency last-last (pixel) not given < 1 line < 1 line < 1 line 

Speed 1 layer [fps@1920x1080] [9 - 35] 48 120 144 



 
 

10 of 10 
 

Conclusions 
Companies can run analysis by using the 

Pistonhead platform in their applications and 

collect useful data. The entire vision system can 

be developed fast and easy, directly on the 

HW-board and remotely be tested and revised. 

Bottlenecks and critical parts of the vision 

system can then be identified and successively 

accelerated in FPGA firmware to enhance and 

speed up the processing. New functionalities 

can also be integrated at any stage of 

development. If needed, only useful data can 

be sent out on the network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How about the snakes? 

Well have you seen a python? (there are 4) 

How many other animals did you see? 

 

 

 

 

 

www.bitsim.com 

info@bitsim.com 

http://www.bitsim.com/
mailto:info@bitsim.com


 
 

  1 of 6 
   

Appendix: Python coding examples 
In the following example, we will show you how to acquire images from a 

IR1 camera and a daylight camera2 in Pistonhead board, the BitSims High-

level imaging platform. For doing this, we will use BitSim libraries that 

simplify interactions with the cameras. Then, we will also apply some well-

known image processing algorithms to the captured images. Everything, 

from the interface to the actual processing, runs on the board. To save 

space the images have been scaled to fit nicely on the pages. 

Preparation 
Before we can use the cameras, we need to set up the system. This means 

to import the Python modules (libraries) needed in the example and load 

the overlay. 

 

  

 
1 A radiometric-capable compact IR (LWIR) camera solution from FLIR 2 OV5640 (OmniVision) 

# Jupyter Magic Functions 

%load_ext autoreload 

%autoreload 2 

%matplotlib inline 

 

# PYNQ Modules/Libraries 

from pynq import Overlay 

from pynq import PL 

 

# Image Processing Modules 

#NumPy to store the frame from the Lepton camera 

import numpy as np  

#OpenCV for its algorithms of Computer Vision 

import cv2  

#Matplotlib to display the acquired frame 

from matplotlib import colors, pyplot as plt 
 

# BitSim Module/Library 

from bitsim.demo import * 

 

# Program the PL 

ol = Overlay('design/spiderpig.bit') 



 
 

2 of 6 
 

Take images 
Now we can use the both the cameras. We start with taking an image in 

the visible light spectrum. 

 

 

 

 

This gives us the following image of a BitSim engineer at work. 

 

 

 

 

 

 

 

 

  

# Get frame from Daylight Camera 

day_cam = BitOVCamera(ol) #instantiate the camera 

day_img = day_cam.getFrame() #acquire a new frame 

 

# Display the image 

plt.figure(figsize=(10,8)); plt.imshow(day_img) 



 
 

  3 of 6 
 

The second image is taken using the IR camera. You may observe 

that the image is not used immediately, it gets normalized first.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The first picture shows the image “as it is”: completely blank!3 

The second picture shows instead the image after normalization: 

now it is understandable. 

 

 

 

 

 

 

 
3 The values in the image before normalization are spread in a range 
between [-31000, +31000] so there is basically no information in the usual 
range [0, 255] and the picture results blank. 

 

 

 

  

ir_cam = BitLepton() #instantiate the IR Lepton camera 

while not ir_cam.nextImage(): #wait for a valid image 

    pass 

 

# Get IR image 

ir_raw = ir_cam.ImageData #store the acquired image 

 

# Show the first result 

norm = colors.Normalize(vmin=0, vmax=255) #define normalization 

plt.subplot(1,2,1); plt.title('Before Normalization') 

ir_raw_plt = plt.imshow(ir_raw, cmap='gray', norm=norm)  

plt.colorbar(ir_raw_plt) 

 

# Normalize 

ir_img = cv2.normalize(ir_raw, ir_img, 0, 255,  

                       cv2.NORM_MINMAX).astype(np.uint8) 

# Show the second result 

plt.subplot(1,2,2); plt.title('After Normalization')  

ir_img_plt = plt.imshow(ir_img, cmap='gray', norm=norm) 

plt.colorbar(ir_img_plt) 



 
 

4 of 6 
 

Image processing 
Now when we have the images, we can apply some image processing with 

OpenCV. In these simple examples, no accelerations are shown. An 

example of an image processing function is edge detection. Edge detection 

comes in many flavours, in our case we show the canny edge detection 

algorithm. 

 

 

 

As the name suggests, edge detection shows the edges in the image.  

 

 

 

 

  

# Edges in Daylight Image 

#apply the Canny Edge Detector 

day_img_canny = cv2.Canny(day_img, 100, 200) 

 

# Show the result  

plt.subplot(1,2,1); plt.imshow(day_img_canny, cmap='gray')  

 

# Edges in IR Image 

# Apply the Canny Edge Detector 

ir_img_canny = cv2.Canny(ir_img, 100, 200)  

# Show the result  

plt.subplot(1,2,2); plt.imshow(ir_img_canny, cmap='gray')  

Edges from RGB camera Edges from IR camera 



 
 

  5 of 6 
 

In image processing, generating histograms is an important operation. It 

can be used to select parameters for other functions and it can also show 

what is happening in an image. 

 

 

 

In the histograms, we can see how many pixels of which value are in the 

image. The RGB image has been converted to greyscale to simplify the 

display. Although, it is not at all unusual to generate histograms for the red, 

green and blue channels separately. 

 

 

 

 

 

  

# Daylight Image's Histogram 

# Convert to gray first 

day_img = cv2.cvtColor(day_img, cv2.COLOR_BGR2GRAY)  

plt.figure(figsize=(13,5)) 

plt.subplot(1,2,1); plt.hist(day_img.ravel(), 256, [0,256]) 

 

# IR Image's Histogram 

plt.subplot(1,2,2); plt.hist(ir_img.ravel(), 256, [0,256]) 

RGB histogram IR histogram 



 
 

6 of 6 
 

In this last example, a Fourier transform is done. This allows analysis in the 

frequency domain.  

 

 

 

 

 

 

 

 

By looking at these plots, a human cannot see much. Further analysis on 

the data is needed to extract useful information.  

 

 

 

 

 

 

"""Daylight Image""" 

f = np.fft.fft2(day_img) #Fast Fourier Transform 

fshift = np.fft.fftshift(f) #Shifting 

magnitude_spectrum = 20*np.log(np.abs(fshift)) #Magnitude 

 

# Show FFT for daylight image 

plt.subplot(1,2,1), plt.imshow(magnitude_spectrum, cmap='gray') 

 

"""IR Image""" 

f = np.fft.fft2(ir_img) #Fast Fourier Transform 

fshift = np.fft.fftshift(f) #Shifting 

magnitude_spectrum = 20*np.log(np.abs(fshift)) #Magnitude 

 

# Show FFT for IR image 

plt.subplot(1,2,2), plt.imshow(magnitude_spectrum, cmap='gray') 

RGB frequency domain IR frequency domain 


	Introduction
	Central or distributed processing
	Advantages of Edge Computing
	FPGA SoC Evolution
	Vision Systems
	Vision and Machine Learning systems on FPGA SoCs
	Pistonhead – A High-level Imaging Processing Platform

	Use case: Pistonhead for Smart Farming
	Simplifying Analysis

	The PYNQ framework
	FPGA Acceleration in PYNQ

	Productivity vs performance
	The numbers

	Conclusions
	Appendix: Python coding examples
	Preparation
	Take images
	Image processing


